Tất cả giá trị của tham số \(m\) sao cho bất phương trình \({\log _{0,02}}\left( {{{\log }_2}\left( {{3^x} + 1} \right)} \right) > {\log _{0,02}}m\) có nghiệm với mọi số thực âm là A.\(m < 2.\) B.\(m \ge 1.\) C.\(0 < m < 1.\) D.\(m > 1.\)
Đáp án đúng: B Phương pháp giải: - Giải bất phương trình đã cho tìm tập nghiệm \(S\). - Bất phương trình có nghiệm với mọi số thực âm nghĩa là mọi số âm đều là nghiệm của bất phương trình. Điều này tương đương \(\left( { - \infty ;0} \right) \subset S\).Giải chi tiết:ĐKXĐ: \(\left\{ \begin{array}{l}{3^x} + 1 > 0\\{\log _2}\left( {{3^x} + 1} \right) > 0\\m > 0\end{array} \right. \Leftrightarrow m > 0\). Với \(m > 0\) ta có : \(\begin{array}{l}{\log _{0,02}}\left( {{{\log }_2}\left( {{3^x} + 1} \right)} \right) > {\log _{0,02}}m\\ \Leftrightarrow {\log _2}\left( {{3^x} + 1} \right) < m\\ \Leftrightarrow {3^x} + 1 < {2^m}\\ \Leftrightarrow {3^x} < {2^m} - 1\\ \Leftrightarrow x < {\log _3}\left( {{2^m} - 1} \right)\end{array}\) Do đó tập nghiệm của bất phương trình là \(S = \left( { - \infty ;{{\log }_3}\left( {{2^m} - 1} \right)} \right)\). Bất phương trình có nghiệm với mọi số thực âm, nghĩa là mọi số âm đều là nghiệm của bất phương trình. Điều này tương đương \(\left( { - \infty ;0} \right) \subset S\). \(\begin{array}{l} \Leftrightarrow \left( { - \infty ;0} \right) \subset \left( { - \infty ;{{\log }_3}\left( {{2^m} - 1} \right)} \right)\\ \Leftrightarrow 0 \le {\log _3}\left( {{2^m} - 1} \right) \Leftrightarrow {2^m} - 1 \ge 1\\ \Leftrightarrow {2^m} \ge 2 \Leftrightarrow m \ge 1\end{array}\) Chọn B.