$\\$
Đặt `A = 32/(3.7) + 6/(7.41) + 9/(41.10) + 1/(10.51) + 19/(51 . 14)`
Nhân hai vế với `1/5` ta được :
`-> 1/5 A = 1/5 (32/(3.7) + 6/(7.41) + 9/(41.10) + 1/(10.51) + 19/(51 . 14) )`
`-> 1/5 A = 32/(3.5.7) + 6/(7.5.41) + 9/(41.5.10) + 1/(10.5.51) + 19/(51.5.14)`
`-> 1/5 A = 32/(3 . (5.7) ) + 6/( (7.5) . 41) + 9/(41 . (5.10) ) + 1/( (10.5) . 51) + 19/(51 . (5.14) )`
`-> 1/5 A = 32/(3 . 35) + 6/(35 . 41) + 9/(41 . 50) + 1/(50 . 51) + 19/(51 . 70)`
`-> 1/5 A = (35-3)/(3.35) + (41-35)/(35 . 41) + (50-41)/(41.50) + (51-50)/(50.51) + (70 - 51)/(51 . 70)`
`-> 1/5A = 1/3 - 1/35 + 1/35 - 1/41 + 1/41 - 1/50 + 1/50 - 1/51 + 1/51 - 1/70`
`-> 1/5A = 1/3 - 1/70`
`-> 1/5A = 70/210 - 3/210`
`-> 1/5 A=67/210`
`-> A = 67/210 : 1/5`
`-> A = 67/210 . 5`
`-> A=67/42`
Vậy `A=67/42`