$9)\frac{x^{2}}{5x+25}+\frac{2(x-3)}{x}+\frac{50+5x}{x(x+5)}$
$=\frac{x^{2}}{5.(x+5)}+\frac{2.(x-5)}{x}+\frac{50+5x}{x.(x+5)}$
$=\frac{x^{3}+10.(x-5)(x+5)+5.(50+5x)}{5x.(x+5)}$ $=\frac{x^{3}+10x^{2}-250+250+25x}{5x.(x+5)}$
$=\frac{x^{3}+10x^{2}+25x}{5x.(x+5)}$
$=\frac{x.(x^{2}+10x+25)}{5x.(x+5)}$
$=\frac{x.(x+5)^{2}}{5x.(x+5)}$
$=\frac{x+5}{5}$
$10)\frac{10x+11}{3x-3}+\frac{15x+13}{4-4x^{2}}$
$=\frac{10x+11}{3.(x-1)}+\frac{15x+13}{4.(1-x^{2})}$
$=\frac{10x+11}{3.(x-1)}+\frac{15x+13}{4.(1-x)(1+x)}$
$=\frac{10x+11}{3.(x-1)}-\frac{15x+13}{4.(x-1)(x+1)}$
$=\frac{4.(10x+11)(x+1)-3.(15x+13)}{12.(x-1)(x+1)}$
$=\frac{40x^{2}+84x+44-45x-39}{12.(x-1)(x+1)}$
$=\frac{40x^{2}+39x+5}{12.(x-1)(x+1)}$