Giải thích các bước giải:
$\dfrac{a}{b}= \dfrac{c}{d}$
$\Rightarrow \dfrac{a}{c}= \dfrac{b}{d}= \dfrac{a+b}{c+d}$
$\Rightarrow \dfrac{a+b}{b}= \dfrac{c+d}{d},\dfrac{a+b}{a}= \dfrac{c+d}{c},\dfrac{a}{a+b}= \dfrac{c}{c+d}$
$\dfrac{a}{c}= \dfrac{b}{d}= \dfrac{a-b}{c-d}$
$\Rightarrow \dfrac{a-b}{a}= \dfrac{c-d}{c},\dfrac{a-b}{b}= \dfrac{c-d}{d},\dfrac{a}{a-b}= \dfrac{c}{c-d}$