`1)17`$\vdots$`2x-1`
Để `17`$\vdots$`2x-1` thì `2x-1` phải `∈Ư(17)`
`Ư(17)={-17;-1;1;17}`
`⇒2x-1=-17⇔2x=-16⇔x=-8`
`⇒2x-1=-1⇔2x=0⇔x=0`
`⇒2x-1=1⇔2x=2⇔x=1`
`⇒2x-1=17⇔2x=18⇔x=9`
Vậy `x∈{-8;0;1;9}`
`2)33`$\vdots$`3x+1`
Để `33`$\vdots$`3x+1` thì `3x+1` phải `∈Ư(33)`
`Ư(33)={-33;-11;-3;-1;1;3;11;33}`
`⇒3x+1=-33⇔x=-(34)/3`
`⇒3x+1=-11⇔x=-4`
`⇒3x+1=-3⇔x=-4/3`
`⇒3x+1=-1⇔x=-2/3`
`⇒3x+1=1⇔x=0`
`⇒3x+1=3⇔x=2/3`
`⇒3x+1=11⇔x=4`
`⇒3x+1=33⇔x=(34)/3`
Vậy `x∈{-(34)/3;-4;-4/3;-2/3;0;2/3;4;(34)/3}`
`3)27`$\vdots$`5x+2`
`Ư(27)={-27;-9;-3;-1;1;3;9;27}`
`⇒5x+2=-27⇔x=-5,8`
`⇒5x+2=-9⇔x=-2,2`
`⇒5x+2=-3⇔x=-1`
`⇒5x+2=-1⇔x=-0,6`
`⇒5x+2=1⇔x=-0,2`
`⇒5x+2=3⇔x=1/5`
`⇒5x+2=9⇔x=7/5`
`⇒5x+2=27⇔x=5`
Vậy `x∈{-5,8;-2,2;-1;-0,6;-0,2;1/5;7/5;5}`