Đáp án:
$a)$ \(\left[ \begin{array}{l}x=\dfrac{-29}{8}\\x=\dfrac{-19}{8}\end{array} \right.\)
$b) x=\dfrac{-1}{2}$
$c) x=-1$
Giải thích các bước giải:
Bài $1:$
$a) -2×|x+3|+\dfrac{1}{2}=\dfrac{-3}{4}$
$⇒|x+3|=(\dfrac{-3}{4}-\dfrac{1}{2})÷2$
$⇒|x+3|=\dfrac{-5}{8}$
$+) |x+3|=\dfrac{5}{8}$
$⇒x+3=\dfrac{5}{8}$
$⇒x=\dfrac{5}{8}-3$
$⇒x=\dfrac{-19}{8}$
$+) |x+3|=\dfrac{-5}{8}$
$⇒x+3=\dfrac{-5}{8}$
$⇒x=\dfrac{-5}{8}-3$
$⇒x=\dfrac{-29}{8}$
Vậy \(\left[ \begin{array}{l}x=\dfrac{-19}{8}\\x=\dfrac{-29}{8}\end{array} \right.\)
$b) |x+1|-5x=3$
$⇒x+1-5x=3$
$⇒-4x=3-1$
$⇒-4x=2$
$⇒x=\dfrac{-1}{2}$
$c) |x-2|+2|3+x|=1$
$⇒x-2+6+2x=1$
$⇒x+2x=1+2-6$
$⇒3x=-3$
$⇒x=-1$
Xin hay nhất