Đáp án:
Giải thích các bước giải:
`16(x-3)^2 - (2x-5)^2 = 0`
`-> 16x^2 - 96x + 144 - 4x^2 + 20x - 25 = 0`
`-> (16x^2 - 4x^2) + (20x - 96x) + (144-25) = 0`
`-> 12x^2 - 76x + 119 = 0`
`-> (12x^2-34x) + (-42x+119) = 0`
`-> 2x(6x-17) - 7(6x-17) = 0`
`-> (6x-17)(2x-7) = 0`
`->`\(\left[ \begin{array}{l}6x-17=0\\2x-7=0\end{array} \right.\)
`->`\(\left[ \begin{array}{l}x=\dfrac{17}6\\x=\dfrac72\end{array} \right.\)
Vậy `x \in {17/6,7/2}`
`3x(x-5)-(3x^2-7x+5) = 0`
`-> 3x^2 - 15x - 3x^2 + 7x - 5 = 0`
`-> (3x^2-3x^2) + (-15x+7x) - 5 = 0`
`-> -8x - 5 = 0`
`-> -8x = 5`
`-> x = -5/8`
Vậy `x \in {-5/8}`
`(2x-3)(3x-4)-(6x-5)(x+2)=2x+3`
`-> 6x^2 - 17x + 12 - 6x^2 - 7x + 10 = 2x + 3`
`-> (6x^2-6x^2) - (17x+7x) + (12+10) = 2x + 3`
`-> -24x + 22 = 2x +3`
`-> -24x = 2x - 19`
`-> -26x = -19`
`-> x = 19/26`
Vậy `x \in {19/26}`