Đáp án:
Giải thích các bước giải:
$\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{x.(x+1)}=\dfrac{2001}{2003}$
$ $
$⇒2.(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.(x+1)})=\dfrac{2001}{2003}$
$ $
$⇒2.(\dfrac{1}{2}-\dfrac{1}{x+1})=\dfrac{2001}{2003}$
$ $
$⇒\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2001}{4006}$
$ $
$⇒\dfrac{1}{x+1}=\dfrac{2}{4006}$
$ $
$⇒\dfrac{1}{x+1}=\dfrac{1}{2003}$
$ $
$⇒x+1=2003$
$⇒x=2002$