Gọi hai số tự nhiên cần tìm lần lượt là $a,b$ ( $a,b ∈N$)
Vì hiệu của 2 số là 14 nên : $a- b = 14$ (giả sử $a>b$)
=> $b=a-14$
Vì tích hai số là 72 nên :
$a . b =72$=> $a .(a -14) = 72$
=> $a^{2} -14a = 72$
=> $a^{2} - 14a - 72 =0$
=> $a^{2} +4a - 18a - 72 =0$
=> $a(a+4) - 18(a+4) = 0$
=>$( a+4)(a-18) = 0$ =>\(\left[ \begin{array}{l}a+4 =0\\a-18=0\end{array} \right.\)
=>\(\left[ \begin{array}{l}a=-4 (loại) \\a=18 ( tm)\end{array} \right.\)
Với $a=18 => b = 4$
Vậy hai số tự nhiên cần tìm là $18$ và $4$
#không hiểu chỗ nào comment bên dưới nha -.-