`5 - (2x-3)^2 - (x+1)^2 - 15(x+4)(x-4) = -10`
`=>` `5 - (4x^2 - 12x + 9) - (x^2 + 2x + 1) - 15(x^2 - 16) = -10`
`=>` `5 - 4x^2 + 12x - 9 - x^2 - 2x - 1 - 15x^2 + 240 = -10`
`=>` `- 4x^2 + 12x - x^2 - 2x - 15x^2 = -10 - 5 + 9 + 1 - 240`
`=>` `- 20x^2 + 10x = -245`
`=>` `20x^2 - 10x - 245 = 0`
`=>` `20x^2 - 10x + 5/4 = 985/4`
`=>` `(sqrt{20}x-sqrt{5}/2)^2= 985/4`
`=>` \(\left[ \begin{array}{l} \sqrt{20}x - \frac{\sqrt{5}}{2} = -\frac{\sqrt{985}}{2}\\\sqrt{20}x - \frac{\sqrt{5}}{2} = \frac{\sqrt{985}}{2}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l} \sqrt{20}x = -\frac{\sqrt{985}-\sqrt{5}}{2}\\\sqrt{20}x = \frac{\sqrt{985}+\sqrt{5}}{2}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l} x = -\frac{\sqrt{985}-\sqrt{5}}{2\sqrt{20}}\\x = \frac{\sqrt{985}+\sqrt{5}}{2\sqrt{20}}\end{array} \right.\)
`=>` \(\left[ \begin{array}{l} x = \frac{1-\sqrt{197}}{4}\\x = \frac{1+\sqrt{197}}{4}\end{array} \right.\)