1/Cho tam giác ABC có AB > Ac, tia phân giác của góc A cắt BC ở D. Trên đoạn thẳng AD lấy điểm E. Chứng minh rằng: AB – AC > EB – EC.
2/Cho tam giác ABC và M là một điểm nằm trong tam giác. Gọi I là giao điểm của đường thẳng BM và cạnh AC
a) So sánh MA với MI + IA, từ đó chứng minh MA + MB < IB + IA.
b) So sánh IB với IC + CB, từ đó chứng minh IB + IA < CA + CB.
c) Chứng minh bất đẳng thức MA + MB < CA + CB.
3/Cho hai điểm A và B nằm về hai phía của đường thẳng d. Tìm điểm C thuộc đường thẳng d sao cho tổng AC + CB là nhỏ nhất.
Giải :
Giả sử C là giao điểm của đoạn thẳng AB với đường thẳng d.
Vì C nằm giữa A và B nên ta có:
AC + CB = AB (1)
Lấy điểm C' bất kỳ trên d (C' ≠C)
Nối AC', BC'
Sử dụng bất đẳng thức trong tam giác vào ∆ABC', ta có:
AC' + BC' > AB (2)
Từ (1) và (2) suy ra:
AC' + C'B > AC + CB.
Vậy C là điểm cần tìm.
Hình 1 bài 2
Hình 2 bài 1