`a) x(2x-1)-(x+2)(2x+3)=0`
`<=>2x^2-x-[(x(2x+3)+2(2x+3)]=0`
`<=>2x^2-x-(2x^2+3x+4x+6)=0`
`<=>2x^2-x -2x^2-3x-4x-6=0`
`<=>2x^2-2x^2-x-3x-4x-6=0`
`<=>-6x-6=0`
`<=>-8x=6`
`<=>x=-3/4`
Vậy `S={-3/4}`
`b) (2x+7)^2 - 4x(x-3)= -31`
`<=>[(2x)^2+2.2x.7+7^2]-4x^2+12x=-31`
`<=>4x^2+28x+49-4x^2+12x=-31`
`<=>4x^2-4x^2+28x+12x=-49-31`
`<=>40x=-80`
`<=>x=-2`
Vậy `S={-2}`
Ta có : `(x+y)^2=x^2+2xy+y^2`
`=x^2-2xy+4xy+y^2`
`=(x^2-2xy+y^2)+4xy`
`=(x-y)^2+4xy`
Vì : `x-y=10 ; x.y=4`
`=>10^2+4.4=100+16=116`