Đáp án:
b. \(\left[ \begin{array}{l}
x = \dfrac{1}{2}\\
x = 0
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
a.\left| {2x - 1} \right| = \left| {2x + 3} \right|\\
\to \left[ \begin{array}{l}
2x - 1 = 2x + 3\\
2x - 1 = - 2x - 3
\end{array} \right.\\
\to \left[ \begin{array}{l}
- 1 = 3\left( l \right)\\
4x = - 2
\end{array} \right.\\
\to x = - \dfrac{1}{2}\\
b.\left| {x - 1} \right| = 1 - 3x\\
\to \left[ \begin{array}{l}
x - 1 = 1 - 3x\\
x - 1 = - 1 + 3x
\end{array} \right.\\
\to \left[ \begin{array}{l}
4x = 2\\
2x = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{1}{2}\\
x = 0
\end{array} \right.
\end{array}\)
\(\begin{array}{l}
c.\left| {5x - 3} \right| - x = 7\\
\to \left| {5x - 3} \right| = x + 7\\
\to \left[ \begin{array}{l}
5x - 3 = x + 7\\
5x - 3 = - x - 7
\end{array} \right.\\
\to \left[ \begin{array}{l}
4x = 10\\
6x = - 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{5}{2}\\
x = - \dfrac{2}{3}
\end{array} \right.
\end{array}\)