\(b,6x^3+x^2=2x\)
\(6x^3+x^2-2x=0\)
\(6x^3-3x^2+4x^2-2x\)=0
\(3x^2\left(2x-1\right)+2x\left(2x-1\right)\)=0
\(\left(2x-1\right)\left(3x^2+2x\right)=0\)
=>\(2x-1=0hoac3x^2+2x=0\)
=>\(2x=1\)hoặc \(x\left(3x+2\right)=0\)
=>x=\(\dfrac{1}{2}\)hoặc x=0 hoặc x=\(-\dfrac{2}{3}\)
Vậy...