`a) 2(x - 2)(x + 2) + 4(x - 2)(x + 1) + (x + 2)(8 - 5x) = 0`
`=> 2(x^2 - 2^2) + 4(x^2 + x - 2x - 2) + 8x - 5x^2 + 16 - 10x = 0`
`=> 2x^2 - 8 + 4x^2 + 4x - 8x - 8 + 8x - 5x^2 + 16 - 10x = 0`
`=> (2x^2 + 4x^2 - 5x^2) + (4x - 8x + 8x - 10x) + (-8 - 8 + 16) = 0`
`=> x^2 - 6x = 0`
`=> x(x - 6) = 0`
`=>` \(\left[ \begin{array}{l}x=0\\x=6\end{array} \right.\)
Vậy `x in {0; 6}`
`b) (2x + 1)(5x - 1) = 20x^2 - 16x - 1`
`=> 10x^2 - 2x + 5x - 1 = 20x^2 - 16x - 1`
`=> 10x^2 + 3x - 1 = 20x^2 - 16x - 1`
`=> 20x^2 - 16x - 1 - 10x^2 - 3x + 1 = 0`
`=> (20x^2 - 10x^2) - (16x + 3x) + (-1 + 1) = 0`
`=> 10x^2 - 19x = 0`
`=> x(10x - 19) = 0`
`=>` \(\left[ \begin{array}{l}x=0\\10x-19=0\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=0\\x=\dfrac{19}{10}\end{array} \right.\)
Vậy `x in {0; 19/10}`
`c) 4x(2x^2 - 1) + 27 = (4x^2 + 6x + 9)(2x + 3)`
`=> 8x^3 - 4x + 27 = 8x^3 + 12x^2 + 12x^2 + 18x + 18x + 27`
`=> 8x^3 + 12x^2 + 12x^2 + 18x + 18x + 27 - 8x^3 + 4x - 27 = 0`
`=> (8x^3 - 8x^3) + (12x^2 + 12x^2) + (18x + 18x + 4x) + (27 - 27) = 0`
`=> 24x^2 + 40x = 0`
`=> x(24x + 40) = 0`
`=>` \(\left[ \begin{array}{l}x=0\\24x+40=0\end{array} \right.\)
`=>` \(\left[ \begin{array}{l}x=0\\x=\dfrac{-5}{3}\end{array} \right.\)
Vậy `x in {0; (-5)/3}`