Đáp án + Giải thích các bước giải:
`d, 2x^3 - 4x^2 + 2x = 0 `
`<=> 2x(x^2-2x+1)=0`
`<=> 2x(x-1)^2=0`
`<=>` \(\left[ \begin{array}{l}2x=0\\(x-1)^2=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=0\\x-1=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\)
Vậy `x=0;x=1`
`e, 5x(x-1)=(x-1)`
`<=> 5x(x-1):(x-1)=(x-1):(x-1)`
`<=> 5x=1`
`<=> x= 1/5`
Vậy `x=1/5`
`f, x^3 - 1/4 x=0`
`<=> x(x^2 - 1/4)=0`
`<=>` \(\left[ \begin{array}{l}x=0\\x^2-1/4 = 0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=0\\x^2 = 1/4\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=0\\x=+-1/2\end{array} \right.\)
Vậy `x=0;x=+-1/2`
`g, x^2(x-3)+4(3-x)=0`
`<=> x^2(x-3)-4(x-3)=0`
`<=> (x^2-4)(x-3)=0`
`<=>` \(\left[ \begin{array}{l}x^2-4=0\\x-3=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=+-2\\x=3\end{array} \right.\)
Vậy `x=+-2;x=3`