Thực hiện phép chia đa thức một biến đã sắp xếp.Phép chia hết có dư bằng 0. Từ đó, ta có 1 phương trình.Phép chia có dư, đồng nhất hệ số với \( - 2x + 1\) ta được 2 phương trình.Giải hệ 3 phương trình 3 ẩn ta được \(a,\,\,b,\,\,c.\)Giải chi tiết:Để \(a{x^3} + b{x^2} + c\) chia hết cho \(x - 1\) thì \(a + b + c = 0\,\,\,\,\left( 1 \right)\)Để \(a{x^3} + b{x^2} + c\) chia cho \({x^2} + 2\) dư \( - 2x + 1\) thì \( - 2ax - 2b + c = - 2x + 1\,\)\( \Leftrightarrow \left\{ \begin{array}{l} - 2a = - 2\\ - 2b + c = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\ - 2b + c = 1\end{array} \right.\,\,\,\left( 2 \right)\)Từ \(\left( 1 \right);\,\,\left( 2 \right)\) ta có hệ phương trình:\(\left\{ \begin{array}{l}a = 1\\1 + b + c = 0\\ - 2b + c = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\c = - 1 - b\\ - 2b - 1 - b = 1\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = 1\\c = - 1 - b\\b = - \frac{2}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - \frac{2}{3}\\c = - \frac{1}{3}\end{array} \right.\)Vậy \(\left\{ \begin{array}{l}a = 1\\b = - \frac{2}{3}\\c = - \frac{1}{3}\end{array} \right.\) hay đa thức bị chia là \({x^3} - \frac{2}{3}{x^2} - \frac{1}{3}.\)