`1/4 . 2/6 . 3/8 . 4/10... 30/62 . 31/64 = 2^{x}`
$\Rightarrow$ `1/{2.2} . 2/{2.3} . 3/{2.4} . 4/{2.5} ... 30/{2.31} . 31/{2.32}= 2^{x}`
$\Rightarrow$ `{1.2.3...30.31}/{1.2.3...30.31.2^{30}.64} = 2^{x}`
$\Rightarrow$ `1/{2^{30}.64} = 2^{x}`
$\Rightarrow$ `1/{2^{30}.2^{6}} = 2^{x}`
$\Rightarrow$ `1/{2^{36}} = 2^{x}`
$\Rightarrow$ `x = -36`
$\text{Vậy}$ `x = -36`