`(x + 2)^2 = 1/2 - 1/3`
`⇒ (x + 2)^2 = 1/6 = (±1/\sqrt{6})^2`
`⇒` \(\left[ \begin{array}{l}x + 2 = 1/\sqrt{6}\\x + 2 = -1/\sqrt{6}\end{array} \right.\)
`⇒` \(\left[ \begin{array}{l}x = 1/\sqrt{6} - 2\\x = -1/\sqrt{6} - 2\end{array} \right.\)
`Vậy S = {1/\sqrt{6} - 2 ; -1/\sqrt{6} - 2}`
`(x - 1)^3 = (x - 1)`
`⇔ (x - 1)^3 - (x - 1) = 0`
`⇔ (x - 1)[(x - 1)^2 - 1] = 0`
`⇒` \(\left[ \begin{array}{l}x - 1 = 0\\(x - 1)^2 = 1\end{array} \right.\)
`⇒` \(\left[ \begin{array}{l}x = 1\\x = 2 ; x = 0\end{array} \right.\)
`Vậy S = {0;1;2}`