Đáp án:
\(\left[ \begin{array}{l}
x = \dfrac{8}{3}\\
x = \dfrac{3}{2}\\
x = \dfrac{1}{2}
\end{array} \right.\)
Giải thích các bước giải:
\(\begin{array}{l}
\left( {\dfrac{4}{{3x}} - \sqrt {0,25} } \right)\left( {\left| {x - 1} \right| - \dfrac{1}{2}} \right) = 0\\
\left( {\dfrac{4}{{3x}} - \dfrac{1}{2}} \right)\left( {\left| {x - 1} \right| - \dfrac{1}{2}} \right) = 0\\
\to \left[ \begin{array}{l}
\dfrac{4}{{3x}} - \dfrac{1}{2} = 0\\
\left| {x - 1} \right| - \dfrac{1}{2} = 0
\end{array} \right.\\
\to \left[ \begin{array}{l}
\dfrac{4}{{3x}} = \dfrac{1}{2}\\
x - 1 = \dfrac{1}{2}\\
x - 1 = - \dfrac{1}{2}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{8}{3}\\
x = \dfrac{3}{2}\\
x = \dfrac{1}{2}
\end{array} \right.
\end{array}\)