Đáp án:
$\begin{array}{l}
a)DKxd:m \ne 1;m \ne 2\\
\frac{{3m - 5}}{{m - 1}} + \frac{{2m - 5}}{{2 - m}} = 1\\
\Rightarrow \frac{{\left( {3m - 5} \right)\left( {2 - m} \right) + \left( {2m - 5} \right)\left( {m - 1} \right)}}{{\left( {m - 1} \right)\left( {2 - m} \right)}} = 1\\
\Rightarrow - 3{m^2} + 6m + 5m - 10 + 2{m^2} - 2m - 5m + 5 = - {m^2} + 3m - 2\\
\Rightarrow - {m^2} + 4m - 5 = - {m^2} + 3m - 2\\
\Rightarrow m = 3\left( {tmdk} \right)\\
d)Dkxd:m \ne - 3;m \ne - \frac{1}{3}\\
\frac{{m - 3}}{{m + 3}} + \frac{{1 - 3m}}{{1 + 3m}} - 1 = 1\\
\Rightarrow \frac{{\left( {m - 3} \right)\left( {1 + 3m} \right) + \left( {1 - 3m} \right).\left( {m + 3} \right)}}{{\left( {m + 3} \right)\left( {1 + 3m} \right)}} = 2\\
\Rightarrow 3{m^2} - 9m + m - 3 - 3{m^2} - 9m + m + 3\\
= 2.\left( {3{m^2} + 9m + m + 3} \right)\\
\Rightarrow - 16m = 6{m^2} + 20m + 6\\
\Rightarrow 6{m^2} + 36m + 6 = 0\\
\Rightarrow m = - 3 \pm 2\sqrt 2 \left( {tmdk} \right)
\end{array}$