Đáp án:
`a\le 1/5`
Giải thích các bước giải:
`\qquad 4ax>x+1`
`<=>4ax-x>1`
`<=>(4a-1)x>1` $\quad (1)$
Nếu `4a-1=0` thì `(1)<=>0>1` (vô lý)
Nếu `4a-1>0` thì `(1)<=>x>1/{4a-1}>0`
`=>` Không thỏa mãn đề bài mọi giá trị `x< -5` là nghiệm của bất phương trình
`=>4a-1<0`
`(1)<=>x< 1/{4a-1}`
Vì với mọi `x` thỏa `x< -5` đều là nghiệm của bất phương trình
`=>1/{4a-1}\ge -5`
`<=>(4a-1). 1/{4a-1}\le -5.(4a-1)`
`<=>1\le -20a+5`
`<=>20a\le 4`
`<=>a\le 1/5`
Vậy `a\le 1/5` thỏa mãn đề bài