Tìm các số nguyên không âm \(a,b,n\) thỏa mãn \(\left\{ \begin{array}{l}{n^2} = a + b\\{n^3} + 2 = {a^2} + {b^2}\end{array} \right.\).
A.\(\left( {n;a;b} \right) \in \left\{ {\left( {2;1;3} \right);\left( {2;3;1} \right)} \right\}\)
B.\(\left( {n;a;b} \right) \in \left\{ {\left( {2;2;3} \right);\left( {2;3;2} \right)} \right\}\)
C.\(\left( {n;a;b} \right) \in \left\{ {\left( {2;1;2} \right);\left( {2;2;1} \right)} \right\}\)
D.\(\left( {n;a;b} \right) \in \left\{ {\left( {1;2;3} \right);\left( {1;3;2} \right)} \right\}\)

Các câu hỏi liên quan