(3n+10) \(⋮\)(n+2)
vì\(\left(n+2\right)⋮\left(n+2\right)\)
=> \(3\left(n+2\right)⋮\left(n+2\right)\)
=> \(\left(3n+6\right)⋮\left(n+2\right)\)
=> \(\left(3n+10\right)-\left(3n+6\right)⋮\left(n+2\right)\)
=>\(\left(3n+10-3n-6\right)⋮\left(n+2\right)\)
=> \(4⋮\left(n+2\right)\)
=> \(n+2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
ta có bảng sau
n+2 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -6 | -4 | -3 | -1 | 0 | 2 |
vậy \(n\in\left\{-6;-4;-3;-1;0;2\right\}\)