A có nghĩa khi \(\dfrac{2x+3}{x-3}\ge0=>\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-\dfrac{3}{2}\\x\ge3\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-\dfrac{3}{2}\\x\le3\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}x\ge3\\x\le\dfrac{-3}{2}\end{matrix}\right.\)