Đáp án:
Ở dưới `downarrow`
Giải thích các bước giải:
`x^2+2(m-2)x+2m^2-4m-5=0`
ĐK để phương trình có nghiệm:
`\Delta>=0`
`->4(m-2)^2-4(2m^2-4m-5)>=0`
`->(m-2)^2-(2m^2-4m-5)>=0`
`->m^2-4m+4-2m^2+4m+5>=0`
`->-m^2+9>=0`
`->m^2-9<=0`
`->(m-3)(m+3)<=0`
`TH1:`
`m-3<=0,m+3<=0`
`->m<=3,m<=-3`
`->m<=-3`
`TH2:`
`m+3>=0,m-3>=0`
`->m>=-3,m>=3`
`->m>=3`
Vậy `m>=3\or\m<=-3` thì phương trình có nghiệm