Đáp án:
\(\eqalign{
& a)\,\,GTNN\,\,A\,\,bang\,\,0 \Leftrightarrow x = {{9 \pm \sqrt {37} } \over 2} \cr
& b)\,\,GTNN\,\,B\,\,bang\,\,1 \Leftrightarrow x = {1 \over 4} \cr
& c)\,\,GTNN\,\,C\,\,bang\,\,{{\sqrt {10} } \over 2} \Leftrightarrow x = {1 \over 2} \cr} \)
Giải thích các bước giải:
$$\eqalign{
& a)\,\,A = \sqrt {{x^2} - 9x + 11} \cr
& DKXD:\,\,{x^2} - 9x + 11 \ge 0 \Leftrightarrow \left[ \matrix{
x \ge {{9 + \sqrt {37} } \over 2} \hfill \cr
x \le {{9 - \sqrt {37} } \over 2} \hfill \cr} \right. \cr
& {x^2} - 9x + 11 = {x^2} - 2.x.{9 \over 2} + {{81} \over 4} - {{37} \over 4} \cr
& = {\left( {x - {9 \over 2}} \right)^2} - {{37} \over 4} \cr
& Ta\,\,co:\,\, \cr
& + )\,\,x \ge {{9 + \sqrt {37} } \over 2} \Leftrightarrow x - {9 \over 2} \ge {{\sqrt {37} } \over 2} \cr
& + )\,\,x \le {{9 - \sqrt {37} } \over 2} \Leftrightarrow x - {9 \over 2} \le {{ - \sqrt {37} } \over 2} \cr
& \Leftrightarrow {\left( {x - {9 \over 2}} \right)^2} \ge {{37} \over 4} \Leftrightarrow {\left( {x - {9 \over 2}} \right)^2} - {{37} \over 4} \ge 0 \cr
& \Rightarrow A \ge 0 \cr
& Vay\,\,GTNN\,\,A\,\,bang\,\,0 \Leftrightarrow x = {{9 \pm \sqrt {37} } \over 2} \cr
& b)\,\,B = \sqrt {4{x^2} - 4x + 2} \cr
& B = \sqrt {{{\left( {4x - 1} \right)}^2} + 1} \ge 1 \cr
& \Rightarrow GTNN\,\,B\,\,bang\,\,1 \Leftrightarrow x = {1 \over 4} \cr
& c)\,\,C = \sqrt {2{x^2} - 2x + 3} \cr
& C = \sqrt 2 \sqrt {{x^2} - x + {3 \over 2}} \cr
& = \sqrt 2 \sqrt {{x^2} - 2.x.{1 \over 2} + {1 \over 4} + {5 \over 4}} \cr
& = \sqrt 2 \sqrt {{{\left( {x - {1 \over 2}} \right)}^2} + {5 \over 4}} \cr
& {\left( {x - {1 \over 2}} \right)^2} \ge 0 \Rightarrow {\left( {x - {1 \over 2}} \right)^2} + {5 \over 4} \ge {5 \over 4} \cr
& \Rightarrow \sqrt {{{\left( {x - {1 \over 2}} \right)}^2} + {5 \over 4}} \ge {{\sqrt 5 } \over 2} \cr
& \Rightarrow C \ge {{\sqrt {10} } \over 2} \cr
& \Rightarrow GTNN\,\,C\,\,bang\,\,{{\sqrt {10} } \over 2} \Leftrightarrow x = {1 \over 2} \cr} $$