$\begin{array}{l}
a)y = \sin x + \cos x\\
\Leftrightarrow y = \sqrt 2 \left( {\dfrac{{\sqrt 2 }}{2}\sin x + \dfrac{{\sqrt 2 }}{2}\cos x} \right) = \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} \right)\\
- 1 \le \sin \left( {x + \dfrac{\pi }{4}} \right) \le 1\\
\Leftrightarrow - \sqrt 2 \le y \le \sqrt 2 \\
\Rightarrow \left\{ \begin{array}{l}
\max y = \sqrt 2 \Rightarrow x + \dfrac{\pi }{4} = \dfrac{\pi }{2} + k2\pi \Leftrightarrow x = \dfrac{\pi }{4} + k2\pi \\
\min y = - \sqrt 2 \Rightarrow x + \dfrac{\pi }{4} = - \dfrac{\pi }{2} + k2\pi \Leftrightarrow x = \dfrac{{ - 3\pi }}{4} + k2\pi
\end{array} \right.\\
b)y = \sqrt 3 \sin 2x - \cos 2x\\
y = 2\left( {\dfrac{{\sqrt 3 }}{2}\sin 2x - \dfrac{1}{2}\cos 2x} \right) = 2\sin \left( {2x - \dfrac{\pi }{6}} \right)\\
- 1 \le \sin \left( {2x - \dfrac{\pi }{6}} \right) \le 1 \Rightarrow - 2 \le y \le 2\\
\Rightarrow \left\{ \begin{array}{l}
\max y = 2 \Rightarrow 2x - \dfrac{\pi }{6} = \dfrac{\pi }{2} + k2\pi \Leftrightarrow x = \dfrac{\pi }{3} + k\pi \\
\min y = - 2 \Leftrightarrow 2x - \dfrac{\pi }{6} = - \dfrac{\pi }{2} + k2\pi \Leftrightarrow x = - \dfrac{\pi }{6} + k\pi
\end{array} \right.
\end{array}$