Đáp án:
b) \(Max = \dfrac{9}{7}\)
Giải thích các bước giải:
\(\begin{array}{l}
a) - 6{x^2} + 8x - 5 = - \left( {6{x^2} - 8x + 5} \right)\\
= - \left( {6{x^2} - 2.x\sqrt 6 .\dfrac{4}{{\sqrt 6 }} + \dfrac{{16}}{6} + \dfrac{7}{3}} \right)\\
= - {\left( {x\sqrt 6 - \dfrac{4}{{\sqrt 6 }}} \right)^2} - \dfrac{7}{3}\\
Do:{\left( {x\sqrt 6 - \dfrac{4}{{\sqrt 6 }}} \right)^2} \ge 0\forall x\\
\to - {\left( {x\sqrt 6 - \dfrac{4}{{\sqrt 6 }}} \right)^2} \le 0\\
\to - {\left( {x\sqrt 6 - \dfrac{4}{{\sqrt 6 }}} \right)^2} - \dfrac{7}{3} \le - \dfrac{7}{3}\\
\to Max = - \dfrac{7}{3}\\
\Leftrightarrow x\sqrt 6 - \dfrac{4}{{\sqrt 6 }} = 0\\
\Leftrightarrow x = \dfrac{2}{3}\\
B = - 7{x^2} + 8x - 1 = - \left( {7{x^2} - 8x + 1} \right)\\
= - \left( {7{x^2} - 2.x\sqrt 7 .\dfrac{4}{{\sqrt 7 }} + \dfrac{{16}}{7} - \dfrac{9}{7}} \right)\\
= - {\left( {x\sqrt 7 - \dfrac{4}{{\sqrt 7 }}} \right)^2} + \dfrac{9}{7}\\
Do:{\left( {x\sqrt 7 - \dfrac{4}{{\sqrt 7 }}} \right)^2} \ge 0\forall x \in R\\
\to - {\left( {x\sqrt 7 - \dfrac{4}{{\sqrt 7 }}} \right)^2} \le 0\\
\to - {\left( {x\sqrt 7 - \dfrac{4}{{\sqrt 7 }}} \right)^2} + \dfrac{9}{7} \le \dfrac{9}{7}\\
\to Max = \dfrac{9}{7}\\
\Leftrightarrow x\sqrt 7 - \dfrac{4}{{\sqrt 7 }} = 0\\
\Leftrightarrow x = \dfrac{4}{7}\\
C = - 7{x^2} - 9x + 5 = - \left( {7{x^2} + 9x - 5} \right)\\
= - \left( {7{x^2} + 2.x\sqrt 7 .\dfrac{9}{{2\sqrt 7 }} + \dfrac{{81}}{{28}} - \dfrac{{221}}{{28}}} \right)\\
= - {\left( {x\sqrt 7 + \dfrac{9}{{2\sqrt 7 }}} \right)^2} + \dfrac{{221}}{{28}}\\
Do:{\left( {x\sqrt 7 + \dfrac{9}{{2\sqrt 7 }}} \right)^2} \ge 0\forall x\\
\to - {\left( {x\sqrt 7 + \dfrac{9}{{2\sqrt 7 }}} \right)^2} \le 0\\
\to - {\left( {x\sqrt 7 + \dfrac{9}{{2\sqrt 7 }}} \right)^2} + \dfrac{{221}}{{28}} \le \dfrac{{221}}{{28}}\\
\to Max = \dfrac{{221}}{{28}}\\
\Leftrightarrow x\sqrt 7 + \dfrac{9}{{2\sqrt 7 }} = 0\\
\Leftrightarrow x = - \dfrac{9}{{14}}
\end{array}\)