$a) A=y^2+8y+15$
$=y^2+8y+16-1$
$=(y+4)^2-1$
Vì $(y+4)^2 \geq 0 ∀y$
$⇒(y+4)^2-1 \geq -1 ∀y$
$⇒min_A=-1$ khi $y+4=0 ⇔ y=-4$
$b) B=x^2+y^2-2x+2y+15$
$=(x^2-2x+1)+(y^2+2y+1)+13$
$=(x-1)^2+(y+1)^2+13$
Vì $(x-1)^2+(y+1)^2 \geq 0 ∀x;y$
$⇒(x-1)^2+(y+1)^2+13 \geq 13 ∀x;y$
⇒ $min_B=13$ khi $\left\{ \begin{matrix}x=1\\y=-1\end{matrix} \right.$
$c) C=x^2+y^2-x+6y+10$
$=\left (x^2-x+\dfrac{1}{4} \right )+\dfrac{3}{4}+(y^2+6y+9)$
$=\left (x-\dfrac{1}{2} \right )+(y+3)^2+\dfrac{3}{4}$
$\left (x-\dfrac{1}{2} \right )+(y+3)^2 \geq 0 ∀x;y$
$⇒\left (x-\dfrac{1}{2} \right )+(y+3)^2+\dfrac{3}{4} \geq \dfrac{3}{4} ∀x;y$
$⇒min_C=\dfrac{3}{4}$ khi $\left\{ \begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix} \right.$