Đáp án:
$\begin{array}{l}
Do:\left\{ \begin{array}{l}
- 1 \le \cos x \le 1\\
- 1 \le \sin x \le 1
\end{array} \right.\\
1)y = 3 + 3\cos x\\
Do: - 3 \le 3\cos x \le 3\\
\Leftrightarrow 3 - 3 \le 3 + 3\cos x \le 3 + 3\\
\Leftrightarrow 0 \le y \le 6\\
\Leftrightarrow \left\{ \begin{array}{l}
GTNN:y = 0\,khi:\cos x = - 1 \Leftrightarrow x = \pi + k2\pi \\
GTLN:y = 6\,khi:\cos x = 1 \Leftrightarrow x = k2\pi
\end{array} \right.\\
2) - 1 \le \sin 2x \le 1\\
\Leftrightarrow - 4 \le - 4\sin 2x \le 4\\
\Leftrightarrow 3 - 4 \le 3 - 4\sin 2x \le 3 + 4\\
\Leftrightarrow - 1 \le y \le 7\\
\Leftrightarrow \left\{ \begin{array}{l}
GTNN:y = - 1\,khi:\sin 2x = 1 \Leftrightarrow x = \dfrac{\pi }{4} + k\pi \\
GTLN:y = 7\,khi:\sin 2x = - 1 \Leftrightarrow x = \dfrac{{ - \pi }}{4} + k\pi
\end{array} \right.\\
3)y = 3 - 4{\sin ^2}x.{\cos ^2}x\\
= 3 - {\left( {2\sin x.\cos x} \right)^2}\\
= 3 - {\sin ^2}2x\\
Do:0 \le {\sin ^2}2x \le 1\\
\Leftrightarrow 2 \le 3 - {\sin ^2}2x \le 3\\
\Leftrightarrow 2 \le y \le 3\\
\Leftrightarrow \left\{ \begin{array}{l}
GTNN:y = 2\,khi:{\sin ^2}2x = 1 \Leftrightarrow x = \dfrac{\pi }{4} + \dfrac{{k\pi }}{2}\\
GTLN:y = 3\,khi:{\sin ^2}2x = 0 \Leftrightarrow x = \dfrac{{k\pi }}{2}
\end{array} \right.\\
4)y = \dfrac{{1 + 4{{\cos }^2}x}}{3}\\
\dfrac{1}{3} \le \dfrac{{1 + 4{{\cos }^2}x}}{3} \le \dfrac{5}{3}\\
\Leftrightarrow \dfrac{1}{3} \le y \le \dfrac{5}{3}\\
\Leftrightarrow \left\{ \begin{array}{l}
GTNN:y = \dfrac{1}{3}\\
GTLN:y = \dfrac{5}{3}
\end{array} \right.\\
5)y = 2{\sin ^2}x - \cos 2x\\
= 2{\sin ^2}x - \left( {1 - 2{{\sin }^2}x} \right)\\
= 4{\sin ^2}x - 1\\
Do: - 1 \le 4{\sin ^2}x - 1 \le 3\\
\Leftrightarrow - 1 \le y \le 3\\
\Leftrightarrow \left\{ \begin{array}{l}
GTLN:y = 3\\
GTNN:y = - 1
\end{array} \right.\\
6)y = 3 - 2.\left| {\sin x} \right|\\
Do:0 \le 2\left| {\sin x} \right| \le 2\\
\Leftrightarrow - 2 \le - 2\left| {\sin x} \right| \le 0\\
\Leftrightarrow 1 \le 3 - 2\left| {\sin x} \right| \le 3\\
\Leftrightarrow 1 \le y \le 3\\
\Leftrightarrow \left\{ \begin{array}{l}
GTNN:y = 1\\
GTLN:y = 3
\end{array} \right.
\end{array}$