Đáp án:
$a)\quad \begin{cases}\min y = - 3 \Leftrightarrow x =- \dfrac{3\pi}{4} + k2\pi\\\max y = 3\Leftrightarrow x = \dfrac{\pi}{4} + k2\pi\end{cases}\quad (k\in\Bbb Z)$
$b)\quad \begin{cases}\min y = 4\sqrt2 -1\Leftrightarrow x = -\dfrac{\pi}{2} + k2\pi\\\max y = 7 \Leftrightarrow x = \dfrac{\pi}{2} + k2\pi\end{cases}\quad (k\in\Bbb Z)$
Giải thích các bước giải:
$a)\quad y = 3\sin\left(x + \dfrac{\pi}{4}\right)$
Ta có:
$\quad - 1 \leqslant \sin\left(x + \dfrac{\pi}{4}\right) \leqslant 1$
$\Leftrightarrow - 3 \leqslant 3\sin\left(x + \dfrac{\pi}{4}\right) \leqslant 3$
Vậy $\min y = - 3 \Leftrightarrow \sin\left(x + \dfrac{\pi}{4}\right)= -1 \Leftrightarrow x =- \dfrac{3\pi}{4} + k2\pi$
$\max y = 3 \Leftrightarrow \sin\left(x + \dfrac{\pi}{4}\right)= 1 \Leftrightarrow x = \dfrac{\pi}{4} + k2\pi\quad (k\in\Bbb Z)$
$b)\quad y = 4\sqrt{\sin x +3} - 1$
Ta có:
$\quad -1\leqslant \sin x \leqslant 1$
$\Leftrightarrow 2\leqslant \sin x + 3 \leqslant 4$
$\Leftrightarrow 4\sqrt2 \leqslant 4\sqrt{\sin x +3} \leqslant 8$
$\Leftrightarrow 4\sqrt2 -1\leqslant 4\sqrt{\sin x +3} -1\leqslant 7$
Vậy $\min y = 4\sqrt2 -1\Leftrightarrow \sin x = -1\Leftrightarrow x = -\dfrac{\pi}{2} + k2\pi$
$\max y = 7 \Leftrightarrow \sin x = 1 \Leftrightarrow x = \dfrac{\pi}{2} + k2\pi\quad (k\in\Bbb Z)$