\[\begin{array}{l}
y = \frac{2}{{\sqrt {{{\sin }^2}x - 2\sin x + m - 1} }}\\
Hs\,\,xd\,\,tren\,\,\,R \Leftrightarrow {\sin ^2}x - 2\sin x + m - 1 > 0\,\,\forall x \in R\,\,\,\left( * \right)\\
Dat\,\,\sin x = t\\
Ta\,\,co:\,\,\, - 1 \le \sin x \le 1 \Rightarrow - 1 \le t \le 1.\\
\Rightarrow \left( * \right) \Leftrightarrow {t^2} - 2t + m - 1 > 0\,\,\forall t \in \left[ { - 1;\,\,1} \right].\\
\Leftrightarrow {t^2} - 2t + 1 + m - 2 > 0\,\,\,\forall t \in \left[ { - 1;\,1} \right]\\
\Leftrightarrow {\left( {t - 1} \right)^2} > 2 - m\,\,\forall t \in \left[ { - 1;\,\,1} \right]\\
\Leftrightarrow 2 - m < \mathop {Min}\limits_{\left[ { - 1;\,\,1} \right]} {\left( {t - 1} \right)^2}\\
Voi\,\,\,t \in \left[ { - 1;\,\,1} \right] \Rightarrow 0 \le {\left( {t - 1} \right)^2} \le 4\\
\Rightarrow 2 - m < 0\\
\Leftrightarrow m > 2.\\
Vay\,\,m > 2\,\,thi\,\,hs\,\,xd\,\,tren\,\,R.
\end{array}\]