Đáp án:
\(m \in \emptyset \)
Giải thích các bước giải:
\(\begin{array}{l}
DKXD:\,\,\left\{ \begin{array}{l}
x - m + 1 \ge 0\\
- x + 4{m^2} > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x \ge m - 1\\
x > 4{m^2}
\end{array} \right.\,\,\left( * \right)\\
Xet\,\,hieu\,\,4{m^2} - m + 1 > 0\,\,\forall m \in R\\
\Rightarrow 4{m^2} > {m^2} - 1\,\,\forall m\\
\left( * \right) \Rightarrow x > 4{m^2} \Rightarrow D = \left( {4{m^2}; + \infty } \right)\\
De\,\,ham\,\,so\,\,xac\,\,dinh\,\,tren\,\,\left( { - 1;3} \right)\\
\Rightarrow \left( { - 1;3} \right) \subset \left( {4{m^2}; + \infty } \right) \Rightarrow 4{m^2} < - 1\,\,\left( {Vo\,\,li} \right)\\
\Rightarrow m \in \emptyset
\end{array}\)