Đáp án:
\(\,m \in \left\{ {\frac{3}{2};\,\,3} \right\}\)
Giải thích các bước giải:
\(\begin{array}{l}
\left( {m - 2} \right){x^2} - \left( {m - 4} \right)x - 2 = 0\,\,\,\left( * \right)\\
Phuong\,\,trinh\,\,\left( * \right)\,\,\,co\,\,hai\,\,nghiem\,\,\,phan\,\,biet\,\,\,{x_1},\,\,{x_2}\\
\Leftrightarrow \left\{ \begin{array}{l}
m - 2 \ne 0\\
\Delta > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 2\\
{\left( {m - 4} \right)^2} + 8\left( {m - 2} \right) > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m \ne 2\\
{m^2} - 8m + 16 + 8m - 16 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 2\\
{m^2} > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \ne 2\\
m \ne 0
\end{array} \right..\\
Ap\,\,dung\,\,he\,\,thuc\,\,Vi - et\,\,ta\,\,co:\,\,\,\left\{ \begin{array}{l}
{x_1} + {x_2} = \frac{{m - 4}}{{m - 2}}\\
{x_1}{x_2} = \frac{{ - 2}}{{m - 2}}
\end{array} \right.\\
Lai\,\,co:\,\,{x_1} - {x_2} = 3 \Leftrightarrow {x_2} = {x_1} - 3\\
\Rightarrow 2{x_1} = \frac{{m - 4}}{{m - 2}} + 3 = \frac{{m - 4 + 3m - 6}}{{m - 2}}\\
\Leftrightarrow 2{x_1} = \frac{{4m - 10}}{{m - 2}} \Leftrightarrow {x_1} = \frac{{2m - 5}}{{m - 2}}\\
\Rightarrow {x_2} = \frac{{2m - 5}}{{m - 2}} - 3 = \frac{{2m - 5 - 3m + 6}}{{m - 2}} = \frac{{ - m + 1}}{{m - 2}}\\
\Rightarrow {x_1}{x_2} = \frac{{ - 2}}{{m - 2}}\\
\Leftrightarrow \frac{{2m - 5}}{{m - 2}}.\frac{{ - m + 1}}{{m - 2}} = \frac{{ - 2}}{{m - 2}}\\
\Leftrightarrow \left( {2m - 5} \right)\left( {m - 1} \right) = 2\left( {m - 2} \right)\\
\Leftrightarrow 2{m^2} - 7m + 5 - 2m + 4 = 0\\
\Leftrightarrow 2{m^2} - 9m + 9 = 0\\
\Leftrightarrow \left( {2m - 3} \right)\left( {m - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
2m - 3 = 0\\
m - 3 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
m = \frac{3}{2}\,\,\left( {tm} \right)\\
m = 3\,\,\,\left( {tm} \right)
\end{array} \right.\\
Vay\,\,m \in \left\{ {\frac{3}{2};\,\,3} \right\}.
\end{array}\)