`a)`
`P = 5 - 2x - x^2`
` = - (x^2 + 2x - 5)`
` = - (x^2 + 2x + 1) + 6`
` = -( x^2 + 2 . x . 1 + 1^2) + 6`
` = - (x+1)^2 + 6`
`\forall x ` ta có :
`(x+1)^2 \ge 0`
`=> -(x+1)^2 \le 0`
`=> -(x+1)^2 + 6 \le 6`
`=> P \le 6`
Dấu `=` xảy ra `<=> x + 1 = 0`
`<=> x = -1`
Vậy `Max_P = 6 <=> x = -1`
`b)`
`Q = -3y^2 + 2y -1`
`= -3 . (y^2 - 2/3y ) -1`
` = -3 . (y^2 - 2/3y + 1/9) - 2/3`
` = -3 . [y^2 - 2 . y . 1/3 + (1/3)^2 ] -2/3`
` = -3 . (y-1/3)^2 - 2/3`
`\forall x` ta có :
`(y-1/3)^2 \ge 0`
`=> -3 . (y-1/3)^2 \le 0`
`=> -3 . (y-1/3)^2 - 2/3 \le -2/3`
`=> Q \le -2/3`
Dấu `=` xảy ra `<=> y - 1/3 =0`
`<=> y=1/3`
Vậy `Max_Q = -2/3 <=> y = 1/3`