Đáp án:
Giải thích các bước giải:
a) $ A = \sqrt[]{x² - 4x + 7} = \sqrt[]{(x - 2)² + 3} ≥ \sqrt[]{3} $
Vậy $MinA = \sqrt[]{3} ⇔ x - 2 = 0 ⇔ x = 2$
b)Áp dụng $BĐT GTTĐ : |a| + |b| ≥ |a - b|$
Dấu $'='$ xảy ra khi $a.b ≤ 0$
$ B = \sqrt[]{(x - 2007)²} + \sqrt[]{(x - 1)²} = |x - 2007| + |x - 1|$
$ ≥ |(x - 2007) - (x - 1)| = |-2006| = 2006$
Vậy $MinB = 2006 ⇔ (x - 2007).(x - 1) ≤ 0 ⇔ 1 ≤ x ≤ 2007$
c)Ta có:
$ \sqrt[]{x² + 2y² - 6x + 4y + 11 } = \sqrt[]{(x - 3)² + 2(y + 1)²}$
$ ≥ \sqrt[]{(x - 3)²} = |x - 3| $ Dấu $'=' ⇔ y + 1 = 0 ⇔ y = - 1 (1)$
$ \sqrt[]{x² + 3y² + 2x + 6x + 4} = \sqrt[]{(x + 1)² + 3(y + 1)²}$
$ ≥ \sqrt[]{(x + 1)²} = |x + 1| $Dấu $'=' ⇔ y + 1 = 0 ⇔ y = - 1 (2)$
$ C = \sqrt[]{x² + 2y² - 6x + 4y + 11 } + \sqrt[]{x² + 3y² + 2x + 6x + 4}$
$ ≥ |x - 3| + |x + 1| ≥ |(x - 3) - (x + 1)| = |- 4| = 4 (3)$
Từ $(1);(2);(3) ⇒ MinC = 4 ⇔ y = - 1; (x - 3)(x + 1) ≤ 0 $
$ ⇔ y = - 1; - 1 ≤ x ≤ 3$
d) $x ≥0; y ≥ 0$
$D = x - 2\sqrt[]{xy} + 3y - 2\sqrt[]{x} + 1$
$ ⇒ 6D = 6x - 12\sqrt[]{xy} + 18y - 12\sqrt[]{x} + 6$
$ = 2(x - 6\sqrt[]{xy} + 18y) + (4x - 12\sqrt[]{x} + 9) - 3 $
$ = 2(\sqrt[]{x} - 3\sqrt[]{y})² + (2\sqrt[]{x} - 3)² - 3 ≥ - 3$
Vậy $MinD = - \frac{1}{2} ⇔ \sqrt[]{x} - 3\sqrt[]{y} = 2\sqrt[]{x} - 3 = 0$
$ ⇔ \sqrt[]{x} = \frac{3}{2} ⇔ x = \frac{9}{4}; \sqrt[]{y} = \frac{1}{2} ⇔ y = \frac{1}{4}$