Đáp án + Giải thích các bước giải:
Cho `C=0`
`=> x^100 - 100x^98 + 100x^2 - 10000 = 0`
`=> x^100 - 10x^99+100x^2−1000x+10x^99−100x^98+1000x−10000 = 0`
`=> (x−10).x^99+100x(x−10)+10(x−10).x^98+1000(x−10)=0`
`=>(x−10).x^99+100x(x−10)+10(x^98+100)(x−10)=0`
`=> x(x^98+100)(x−10)+10(x^98+100)(x−10)=0`
`=> (x+10)(x-10)(x^98+100)=0`
\(⇒\left[ \begin{array}{l}x+10=0\\x-10=0\\x^{98}+100=0\end{array} \right.\)
\(⇒\left[ \begin{array}{l}x=-10\\x=10\\x^{98}=-100\quad(L)\end{array} \right.\)
Vậy `n^o` của đa thức là `x={10;-10}`