$f(x)=3x-6=0$
⇒ $3x=6$
⇒ $x=2$
$g(x)=-5x^2+30x=0$
⇒\(\left[ \begin{array}{l}x=0\\-5x+30=0\end{array} \right.\) $x.(-5x+30)=0$
⇒\(\left[ \begin{array}{l}x=0\\x=6\end{array} \right.\)
$h(x)=(x-3)(16-4x)=0$
⇒\(\left[ \begin{array}{l}x-3=0\\16-3x=0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=3\\x=\dfrac{16}{3}\end{array} \right.\)
$k(x)=2x^3-32x$
⇒\(\left[ \begin{array}{l}x=0\\2x^2-3=0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=0\\x=\dfrac{\sqrt{6}}{2}or\dfrac{-\sqrt{6}}{2}\end{array} \right.\)
$m(x)=x^2+7x-8$
⇒ $x^2+8x-x-8$
⇒ $x(x-1)+8.(x-1)$
⇒ $(x-1).(x+8)=0$
⇒\(\left[ \begin{array}{l}x-1=0\\x+8=0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=1\\x=-8\end{array} \right.\)
$n(x)=5x^2+9x+4$
⇒ $(x+1).(5x+4)=0$
⇒\(\left[ \begin{array}{l}x+1=0\\5x+4=0\end{array} \right.\)
⇒\(\left[ \begin{array}{l}x=-1\\x=\dfrac{-4}{5}\end{array} \right.\)