Đáp án:
Giải thích các bước giải:
Giải : Ta có x = .
Muốn có x, y nguyên thì phải nguyên hay 3 là ước của 2 – y.
Vậy 2 – y = 3t (t ∈ Z)
Khi đó : y = 2 – 3t và x = 9 – y + t = 9 – 2 + 3t + t = 4t + 7
Vậy : là tất cả các nghiệm nguyên của phương trình đã cho.
Muốn tìm các nghiệm nguyên dương của phương trình trên, ta đặt thêm các điều kiện để x > 0
y > 0. Ta có :
Do đó : và t chỉ có hai giá trị t1 = –1, t2 = 0
Với t1 = –1 thì x = 3, y = 5 là nghiệm nguyên dương của phương trình đã cho.
Với t2 = 0 thì x = 2, y = 7 là nghiệm nguyên dương của phương trình đã cho.
b)Giải : Ta có x = (2)
Muốn có x, y nguyên thì 1 – 2y = 7t hay 2y = 1 – 7t (t nguyên).
Từ đó : y = –3t + (3)
Vì y, t nguyên nên 1 – t = 2t1 (t1 nguyên) t = 1 – 2t1
Thay vào (3) ta có : y = –3(1 – 2t1) + t1 = 7t1 – 3.
Thay vào (2) ta được : x = 17 – 3(7t1 – 3) + 1 – 2t1 = 27 – 23t1
Vậy x = 27 – 23t1 , y = 7t1 – 3 là nghiệm nguyên của phương trình (1). Muốn có nghiệm nguyên dương, ta phải có :
Suy ra t1 = 1 và x = 4, y = 4 là nghiệm nguyên dương duy nhất của phương trình đã cho.
Đưa về phương trình tích :
Ta có thể biến đổi một vế của phương trình là tích các biểu thức nguyên của ẩn còn vế kia là
một số nguyên. Bằng cách phân tích số nguyên này thành các thừa số nguyên tố, ta có thể xét mọi trường hợp có thể xảy ra rồi từ đó tính ra nghiệm nguyên của phương trình.