\(x.x=x\)
 \(\Rightarrow x^2=x^1\)
 \(\Rightarrow x^2-x^1=0\)
 \(\Rightarrow x^1\left(x-1\right)=0\)
 \(\Rightarrow\left[{}\begin{matrix}x^1=0\\x-1=0\end{matrix}\right.\)
 \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
 \(x+y=x.y=\dfrac{x}{y}\)
 Từ \(x.y=\dfrac{x}{y}\) ta có:
 \(x=\dfrac{x}{y^2}\) \(\Rightarrow y^2=1\Rightarrow y=\pm1\)
 Xét \(y=1\) ta có:
 \(x+1=x=x\)
 \(x=x+1\) (vô lí)
 Xét \(y=-1\) ta có:
 \(x-1=-x=-x\)
 \(\Rightarrow x-1=-x\)
 \(\Rightarrow2x=1\)
 \(\Rightarrow x=\dfrac{1}{2}\)
 Vậy \(y=-1\) và \(x=\dfrac{1}{2}\)