Tìm số giá trị nguyên của \(m\) thuộc đoạn \(\left[ { - 2019;2019} \right]\) để phương trình sau có nghiệm \(2\sin 2x + \left( {m - 1} \right)\cos 2x = m + 1\) A.\(2021\) B.\(2020\) C.\(4038\) D.\(4040\)
Đáp án đúng: A Phương pháp giải: Phương trình dạng \(a\sin x + b\cos x = c\) có nghiệm khi và chỉ khi \({a^2} + {b^2} \ge {c^2}\).Giải chi tiết:Phương trình \(2\sin 2x + \left( {m - 1} \right)\cos 2x = m + 1\) có nghiệm khi và chỉ khi: \(\begin{array}{l}\,\,\,\,\,{2^2} + {\left( {m - 1} \right)^2} \ge {\left( {m + 1} \right)^2}\\ \Leftrightarrow 4 + {m^2} - 2m + 1 \ge {m^2} + 2m + 1\\ \Leftrightarrow 4m \le 4 \Leftrightarrow m \le 1\end{array}\) Kết hợp điều kiện \(m \in \left[ { - 2019;2019} \right] \Rightarrow m \in \left[ { - 2019;1} \right]\). Vậy có 2021 giá trị nguyên của \(m\) thỏa mãn yêu cầu bài toán. Chọn A.