Đáp án:
$\left \{ {{U_1=-10} \atop {d=2}} \right.$
Giải thích các bước giải:
Áp dụng công thức:$U_n=U_1+(n-1).d$
*$U_2=U_1+(2-1).d=U_1+d$
*$U_8=U_1+(8-1).d=U_1+7.d$
*$U_3=U_1+(3-1).d=U_1+2.d$
*$U_4=U_1+(4-1).d=U_1+3.d$
Ta có:
$\left \{ {{U_2-3U_8=-20} \atop {U_3.U_4=24}} \right.$
<=>$\left \{ {{U_1+d-3.(U_1+7d)=-20} \atop {(U_1+2d).(U_1+3d)=24}} \right.$
<=>$\left \{ {{U_1+d-3.U_1-21d=-20} \atop {U_1^2+5U1d+6d^2=24}} \right.$
<=>$\left \{ {{-U_1-10d=-10} \atop {U_1^2+5U1d+6d^2=24}} \right.$
<=>$\left \{ {{U_1=10-10d} \atop {(10-10d)^2+5.(10-10d)d+6d^2=24}} \right.$
<=>$\left \{ {{U_1=10-10d} \atop {100-200d+100d^2+50d-50d^2+6d^2=24}} \right.$
<=>$\left \{ {{U_1=10-10d} \atop {56d^2-150d+76=0}} \right.$
<=>$\left \{ {{U_1=10-10d} \atop {\left[ \begin{array}{l}d=2(n)\\d=\frac{19}{28}(l)\end{array} \right.}} \right.$
<=>$\left \{ {{U_1=-10} \atop {d=2}} \right.$