$\begin{array}{l}1)\, \dfrac{-13}{\sqrt{x}+1} \in \Bbb Z \, (x \geq 0)\\\Leftrightarrow(\sqrt{x}+1)\in Ư(-13)=\left\{\pm 1;\pm 13\right\}\\mà\, \sqrt{x}+1 \geq 1\\nên\, (\sqrt{x} + 1)= \left\{1;13\right\}\\\text{Ta có bảng giá trị:}\\\begin{array}{|l|r} \sqrt{x}+1 & 1& 13\\ \hline \sqrt{x} & 0& 12 \\ \hline x&0&144 \end{array}\\Vậy\, x = \left\{0;144\right\}\\2)\,\dfrac{\sqrt{x} - 5}{\sqrt{x} + 2}=\dfrac{\sqrt{x} + 2 - 7}{\sqrt{x} + 2}=1-\dfrac{7}{\sqrt{x}+2}\in \Bbb Z \, (x \geq 0)\\\Leftrightarrow(\sqrt{x}+2)\in Ư(7)=\left\{\pm 1; \pm 7\right\}\\Do \, \sqrt{x} + 2 \geq 2 \\nên \, \sqrt{x}+2=7\\\Leftrightarrow \sqrt{x} = 5\\\Leftrightarrow x = 25\\Vậy \, x = 25\\3)\,\dfrac{4\sqrt{x}+1}{2\sqrt{x}-3}=\dfrac{2(2\sqrt{x}-3)+7}{2\sqrt{x}-3}=2+\dfrac{7}{2\sqrt{x}-3}\in \Bbb Z \,(x \geq 0; \, x \in \Bbb Z)\\\Leftrightarrow (2\sqrt{x}-3)\in Ư(7)=\left\{\pm 1; \pm 7\right\}\\\text{Ta có bảng giá trị:}\\\begin{array}{|l|r} 2\sqrt{x}-3 & -7& -1&1&7\\ \hline \sqrt{x} & -2& 1&2&5 \\ \hline x&(loại)&1&4&25 \end{array}\\Vậy \, x=\left\{1;4;25\right\}\\4)\, \dfrac{2\sqrt{x}+6}{\sqrt{x}+5}=\dfrac{2(\sqrt{x} + 5) - 4}{\sqrt{x}+5}=2 -\dfrac{4}{\sqrt{x}+5}\in \Bbb Z \, (x\geq 0)\\\Leftrightarrow (\sqrt{x} + 5)\in Ư(4)=\left\{\pm 1;\pm 2;\, \pm4\right\}\\Do \, \sqrt{x} + 5 \geq 5 \\\text{nên không có x thỏa mãn}\\5)\, \dfrac{7-\sqrt{x}}{\sqrt{x}+8}=\dfrac{-(\sqrt{x}+8)+15}{\sqrt{x}+8}=-2+\dfrac{15}{\sqrt{x}+8}\in \Bbb Z \, (x \geq 0)\\\Leftrightarrow (\sqrt{x}+8)\in Ư(15)=\left\{\pm1; \pm3; \pm 5; \pm 15\right\}\\Do, \sqrt{x}+8\geq 8\\nên \, \sqrt{x}+8 = 15\\\Leftrightarrow \sqrt{x} = 7\\\Leftrightarrow x = 49\\\text{Vậy x = 49}\\6)\, \dfrac{3\sqrt{x}-2}{3\sqrt{x}-4}=\dfrac{3\sqrt{x} - 4 + 2}{3\sqrt{x} - 4}=1+\dfrac{2}{3\sqrt{x}-4}\in \Bbb Z \, (x\geq 0; \, x \in \Bbb Z)\\\Leftrightarrow (3\sqrt{x}-4)\in Ư(2)=\left\{\pm1; \pm2\right\}\\\text{Ta có bảng giá trị:}\\\begin{array}{|l|r} 3\sqrt{x}-4 & -2& -1&1&2\\ \hline \sqrt{x} & \dfrac{2}{3}& 1&\dfrac{5}{3}&2 \\ \hline x&(loại)&1&(loại)&4 \end{array}\\\text{Vậy x = {1;4}}\\7)\,\dfrac{3\sqrt{x}}{\sqrt{x}-1}=\dfrac{3(\sqrt{x}-1)+3}{\sqrt{x}-1}=3+\dfrac{3}{\sqrt{x}-1}\in \Bbb Z \, (x \geq 0)\\\Leftrightarrow (\sqrt{x} - 1)\in Ư(3)=\left\{\pm 1; \pm3\right\}\\Do\, \sqrt{x}-1\geq -1\\nên\, (\sqrt{x}-1)=\left\{\pm1;3\right\}\\\text{Ta có bảng giá trị:}\\\begin{array}{|l|r} \sqrt{x}-1 & -1& 1&3\\ \hline \sqrt{x} & 0& 2&4\\ \hline x&0&4&16 \end{array}\\\text{Vậy x = {0;4;16}}\\8)\, \dfrac{3-x}{\sqrt{x}+3}=\dfrac{(3-\sqrt{x})(\sqrt{x}+3)-6}{\sqrt{x}+3}=3-\sqrt{x}-\dfrac{6}{\sqrt{x}+3}\in \Bbb Z \, (x\geq 0)\\\Leftrightarrow (\sqrt{x}+3)\in Ư(6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\Do \, \sqrt{x} + 3 \geq 3\\nên\, (\sqrt{x}+3)=\left\{3;6\right\}\\\text{Ta có bảng giá trị:}\\\begin{array}{|l|r} \sqrt{x}+3 & 3& 6\\ \hline \sqrt{x} & 0& 3\\ \hline x&0&9 \end{array}\\\text{Vậy x = {0;9}}\end{array}$