Đáp án:
Giải thích các bước giải:
`(x-7)^(x+1)-(x-7)^(x+11)=0`
`=>(x-7)^(x+1)[1-(x-7)^(10)]=0`
`=>`\(\left[ \begin{array}{l}(x-7)^{x+1}=0\\1-(x-7)^{10}=0\end{array} \right.\)
`=>`\(\left[ \begin{array}{l}x-7=0\\(x-7)^{10}=1\end{array} \right.\)
`=>`\(\left[ \begin{array}{l}x=7\\x-7=-1\\x-7=1\end{array} \right.\)
`=>`\(\left[ \begin{array}{l}x=7\\x=6\\x=8\end{array} \right.\)
Vậy `x∈{7;6;8}`