Tìm tọa độ điểm \(A'\) đối xứng với \(A\) qua \(\left( d \right)\). A.\(A'\left( {0;1} \right)\) B.\(A'\left( {1;2} \right)\) C.\(A'\left( {1;0} \right)\) D.\(A'\left( {2;1} \right)\)
Đáp án đúng: C Phương pháp giải: Giả sử \(\left( d \right) \cap \left( {d'} \right) = H\)\( \Rightarrow \) \(H\) là trung điểm của \(AA'\). Tọa độ điểm \(H\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}{x_H} = 1 + t\\{y_H} = 2 + t\\{x_H} + {y_H} - 1 = 0\end{array} \right.\).Giải chi tiết: Theo đề bài, \(A'\) đối xứng với \(A\) qua \(\left( d \right)\) nên \(\left( d \right)\) là đường trung trực của \(AA'\). \( \Rightarrow \left( d \right) \bot AA'\) mà \(A \in \left( {d'} \right)\) và \(\left( d \right) \bot \left( {d'} \right)\) \( \Rightarrow A' \in \left( {d'} \right)\) Giả sử \(\left( d \right) \cap \left( {d'} \right) = H\)\( \Rightarrow \) \(H\) là trung điểm của \(AA'\). Tọa độ điểm \(H\left( {{x_H};\,\,{y_H}} \right)\) là nghiệm của hệ phương trình: \(\begin{array}{l}\left\{ \begin{array}{l}{x_H} = 1 + t\\{y_H} = 2 + t\\{x_H} + {y_H} - 1 = 0\end{array} \right.\\ \Rightarrow \left( {1 + t} \right) + \left( {2 + t} \right) - 1 = 0\\ \Leftrightarrow 2t + 2 = 0\\ \Leftrightarrow t = - 1\end{array}\) \( \Rightarrow \left\{ \begin{array}{l}{x_H} = 1 + \left( { - 1} \right)\\{y_H} = 2 + \left( { - 1} \right)\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_H} = 0\\{y_H} = 1\end{array} \right.\)\( \Rightarrow H\left( {0;\,\,1} \right)\) Vì \(H\) là trung điểm của \(AA'\) nên \(\left\{ \begin{array}{l}{x_A} = 2{x_H} - {x_{A'}}\\{y_A} = 2{y_H} - {y_{A'}}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_A} = 1\\{y_A} = 0\end{array} \right.\) \( \Rightarrow A'\left( {1;\,\,0} \right)\) Chọn C.