a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
$\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{x+y}{5+4}=\dfrac{18}{9}=2$
\(⇒\left[ \begin{array}{l}\dfrac{x}{5}=2⇒x=2.5=10\\\dfrac{y}{4}=2⇒y=2.4=8\end{array} \right.\)
Vậy $(x,y)=(10,8)$
b) $\dfrac{3}{x}=\dfrac{8}{y}$
$⇒\dfrac{x}{3}=\dfrac{y}{8}$
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
$\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{x-y}{3-8}=\dfrac{25}{-5}=-5$
\(⇒\left[ \begin{array}{l}\dfrac{x}{3}=-5⇒x=3.(-5)=-15\\\dfrac{y}{8}=-5⇒y=8.(-5)=-40\end{array} \right.\)
Vậy $(x,y)=(-15,-40)$