Đáp án:
`(y+z+1)/x = (z+x+2)/y = (x+y-3)/z = 1/(x+y+z)`
`= (y+z+1+z+x+2+x+y-3)/(x+y+z)`
`= (2x+2y+2z)/(x+y+z) = 2`
`->{(x+y+z=1/2),(y+z+1=2x),(z+x+2=2y),(x+y-3=2z):}` (*)
`->{(x+y=1/2 - z (1)),(y+z = 1/2 - x (2)),(z+x = 1/2 - y (3)):}`
Thay (1),(2),(3) vào (*)
`-> {(1/2 - z - 3 = 2z),(1/2 - x + 1 = 2x),(1/2 - y + 2 = 2y):}`
`-> {(3z = -5/2 ),(3x=3/2),(3y = 5/2):}`
`-> {(x=1/2),(y=5/6),(z=-5/6):}`
Vậy `(x,y,z) = (1/2 , 5/6 ; -5/6)`