Đáp án:
Giải thích các bước giải:
$\left (1+\dfrac{1}{2} \right )\left (1+\dfrac{1}{3} \right )\left (1+\dfrac{1}{4} \right )....\left (1+\dfrac{1}{100} \right )$
$=\left (\dfrac{2}{2}+\dfrac{1}{2} \right )\left (\dfrac{3}{3}+\dfrac{1}{3} \right )\left (\dfrac{4}{4}+\dfrac{1}{4} \right )....\left (\dfrac{100}{100}+\dfrac{1}{100} \right )$
$=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{101}{100}$
$=\dfrac{1}{2}.101$
$=\dfrac{101}{2}=50,5$