Đặt \(a=\sqrt{\frac{x}{x^2+3}}\left(a\ge0\right)\) ta được: 8a2 + 1 - 6a = 0 => a = 1/2 hoặc a = 1/4
+) Với a = 1/2 \(\Rightarrow\sqrt{\frac{x}{x^2+3}}=\frac{1}{2}\Rightarrow\frac{x}{x^2+3}=\frac{1}{4}\Rightarrow x^2+3=4x\Rightarrow x^2-4x+3=0\Rightarrow\left[\begin{array}{nghiempt}x=3\left(n\right)\\x=1\left(n\right)\end{array}\right.\)
+) Với a = 1/4 \(\Rightarrow\sqrt{\frac{x}{x^2+3}}=\frac{1}{4}\Rightarrow\frac{x}{x^2+3}=\frac{1}{8}\Rightarrow x^2+3=8x\Rightarrow x^2-8x+3=0\Rightarrow\left[\begin{array}{nghiempt}x=4+\sqrt{13}\left(n\right)\\x=4-\sqrt{13}\left(n\right)\end{array}\right.\)